Copied to
clipboard

?

G = C42.178D10order 320 = 26·5

178th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.178D10, C10.402- (1+4), C10.842+ (1+4), C4⋊Q816D5, C4⋊C4.126D10, (C2×Q8).88D10, D208C444C2, D102Q846C2, D103Q838C2, C4.D2027C2, C42D20.14C2, C42⋊D526C2, Dic53Q843C2, C20.140(C4○D4), C20.23D427C2, (C4×C20).218C22, (C2×C20).639C23, (C2×C10).277C24, C4.23(Q82D5), D10.13D447C2, C2.88(D46D10), (C2×D20).179C22, C4⋊Dic5.255C22, (Q8×C10).144C22, C22.298(C23×D5), (C2×Dic5).284C23, (C4×Dic5).174C22, (C22×D5).122C23, D10⋊C4.156C22, C2.41(Q8.10D10), C511(C22.36C24), (C2×Dic10).198C22, C10.D4.169C22, (C5×C4⋊Q8)⋊19C2, C4⋊C4⋊D547C2, C10.124(C2×C4○D4), C2.32(C2×Q82D5), (C2×C4×D5).159C22, (C5×C4⋊C4).220C22, (C2×C4).602(C22×D5), SmallGroup(320,1405)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.178D10
C1C5C10C2×C10C22×D5C2×C4×D5D103Q8 — C42.178D10
C5C2×C10 — C42.178D10

Subgroups: 798 in 216 conjugacy classes, 95 normal (43 characteristic)
C1, C2 [×3], C2 [×3], C4 [×2], C4 [×11], C22, C22 [×9], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×9], D4 [×4], Q8 [×4], C23 [×3], D5 [×3], C10 [×3], C42, C42 [×3], C22⋊C4 [×12], C4⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×6], C22×C4 [×3], C2×D4 [×3], C2×Q8 [×2], C2×Q8, Dic5 [×5], C20 [×2], C20 [×6], D10 [×9], C2×C10, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8 [×3], C22.D4 [×2], C4.4D4 [×3], C422C2 [×2], C4⋊Q8, Dic10 [×2], C4×D5 [×4], D20 [×4], C2×Dic5 [×3], C2×Dic5 [×2], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×2], C22×D5, C22×D5 [×2], C22.36C24, C4×Dic5, C4×Dic5 [×2], C10.D4 [×2], C10.D4 [×2], C4⋊Dic5 [×2], D10⋊C4 [×2], D10⋊C4 [×10], C4×C20, C5×C4⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10, C2×C4×D5, C2×C4×D5 [×2], C2×D20, C2×D20 [×2], Q8×C10 [×2], C42⋊D5, C4.D20, Dic53Q8, D208C4, D10.13D4 [×2], C42D20, D102Q8, C4⋊C4⋊D5 [×2], D103Q8 [×2], C20.23D4 [×2], C5×C4⋊Q8, C42.178D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×2], C24, D10 [×7], C2×C4○D4, 2+ (1+4), 2- (1+4), C22×D5 [×7], C22.36C24, Q82D5 [×2], C23×D5, D46D10, C2×Q82D5, Q8.10D10, C42.178D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=a-1, dad-1=a-1b2, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 87 11 97)(2 98 12 88)(3 89 13 99)(4 100 14 90)(5 91 15 81)(6 82 16 92)(7 93 17 83)(8 84 18 94)(9 95 19 85)(10 86 20 96)(21 118 31 108)(22 109 32 119)(23 120 33 110)(24 111 34 101)(25 102 35 112)(26 113 36 103)(27 104 37 114)(28 115 38 105)(29 106 39 116)(30 117 40 107)(41 160 51 150)(42 151 52 141)(43 142 53 152)(44 153 54 143)(45 144 55 154)(46 155 56 145)(47 146 57 156)(48 157 58 147)(49 148 59 158)(50 159 60 149)(61 135 71 125)(62 126 72 136)(63 137 73 127)(64 128 74 138)(65 139 75 129)(66 130 76 140)(67 121 77 131)(68 132 78 122)(69 123 79 133)(70 134 80 124)
(1 125 112 148)(2 149 113 126)(3 127 114 150)(4 151 115 128)(5 129 116 152)(6 153 117 130)(7 131 118 154)(8 155 119 132)(9 133 120 156)(10 157 101 134)(11 135 102 158)(12 159 103 136)(13 137 104 160)(14 141 105 138)(15 139 106 142)(16 143 107 140)(17 121 108 144)(18 145 109 122)(19 123 110 146)(20 147 111 124)(21 55 83 77)(22 78 84 56)(23 57 85 79)(24 80 86 58)(25 59 87 61)(26 62 88 60)(27 41 89 63)(28 64 90 42)(29 43 91 65)(30 66 92 44)(31 45 93 67)(32 68 94 46)(33 47 95 69)(34 70 96 48)(35 49 97 71)(36 72 98 50)(37 51 99 73)(38 74 100 52)(39 53 81 75)(40 76 82 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 152 11 142)(2 141 12 151)(3 150 13 160)(4 159 14 149)(5 148 15 158)(6 157 16 147)(7 146 17 156)(8 155 18 145)(9 144 19 154)(10 153 20 143)(21 57 31 47)(22 46 32 56)(23 55 33 45)(24 44 34 54)(25 53 35 43)(26 42 36 52)(27 51 37 41)(28 60 38 50)(29 49 39 59)(30 58 40 48)(61 91 71 81)(62 100 72 90)(63 89 73 99)(64 98 74 88)(65 87 75 97)(66 96 76 86)(67 85 77 95)(68 94 78 84)(69 83 79 93)(70 92 80 82)(101 130 111 140)(102 139 112 129)(103 128 113 138)(104 137 114 127)(105 126 115 136)(106 135 116 125)(107 124 117 134)(108 133 118 123)(109 122 119 132)(110 131 120 121)

G:=sub<Sym(160)| (1,87,11,97)(2,98,12,88)(3,89,13,99)(4,100,14,90)(5,91,15,81)(6,82,16,92)(7,93,17,83)(8,84,18,94)(9,95,19,85)(10,86,20,96)(21,118,31,108)(22,109,32,119)(23,120,33,110)(24,111,34,101)(25,102,35,112)(26,113,36,103)(27,104,37,114)(28,115,38,105)(29,106,39,116)(30,117,40,107)(41,160,51,150)(42,151,52,141)(43,142,53,152)(44,153,54,143)(45,144,55,154)(46,155,56,145)(47,146,57,156)(48,157,58,147)(49,148,59,158)(50,159,60,149)(61,135,71,125)(62,126,72,136)(63,137,73,127)(64,128,74,138)(65,139,75,129)(66,130,76,140)(67,121,77,131)(68,132,78,122)(69,123,79,133)(70,134,80,124), (1,125,112,148)(2,149,113,126)(3,127,114,150)(4,151,115,128)(5,129,116,152)(6,153,117,130)(7,131,118,154)(8,155,119,132)(9,133,120,156)(10,157,101,134)(11,135,102,158)(12,159,103,136)(13,137,104,160)(14,141,105,138)(15,139,106,142)(16,143,107,140)(17,121,108,144)(18,145,109,122)(19,123,110,146)(20,147,111,124)(21,55,83,77)(22,78,84,56)(23,57,85,79)(24,80,86,58)(25,59,87,61)(26,62,88,60)(27,41,89,63)(28,64,90,42)(29,43,91,65)(30,66,92,44)(31,45,93,67)(32,68,94,46)(33,47,95,69)(34,70,96,48)(35,49,97,71)(36,72,98,50)(37,51,99,73)(38,74,100,52)(39,53,81,75)(40,76,82,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,152,11,142)(2,141,12,151)(3,150,13,160)(4,159,14,149)(5,148,15,158)(6,157,16,147)(7,146,17,156)(8,155,18,145)(9,144,19,154)(10,153,20,143)(21,57,31,47)(22,46,32,56)(23,55,33,45)(24,44,34,54)(25,53,35,43)(26,42,36,52)(27,51,37,41)(28,60,38,50)(29,49,39,59)(30,58,40,48)(61,91,71,81)(62,100,72,90)(63,89,73,99)(64,98,74,88)(65,87,75,97)(66,96,76,86)(67,85,77,95)(68,94,78,84)(69,83,79,93)(70,92,80,82)(101,130,111,140)(102,139,112,129)(103,128,113,138)(104,137,114,127)(105,126,115,136)(106,135,116,125)(107,124,117,134)(108,133,118,123)(109,122,119,132)(110,131,120,121)>;

G:=Group( (1,87,11,97)(2,98,12,88)(3,89,13,99)(4,100,14,90)(5,91,15,81)(6,82,16,92)(7,93,17,83)(8,84,18,94)(9,95,19,85)(10,86,20,96)(21,118,31,108)(22,109,32,119)(23,120,33,110)(24,111,34,101)(25,102,35,112)(26,113,36,103)(27,104,37,114)(28,115,38,105)(29,106,39,116)(30,117,40,107)(41,160,51,150)(42,151,52,141)(43,142,53,152)(44,153,54,143)(45,144,55,154)(46,155,56,145)(47,146,57,156)(48,157,58,147)(49,148,59,158)(50,159,60,149)(61,135,71,125)(62,126,72,136)(63,137,73,127)(64,128,74,138)(65,139,75,129)(66,130,76,140)(67,121,77,131)(68,132,78,122)(69,123,79,133)(70,134,80,124), (1,125,112,148)(2,149,113,126)(3,127,114,150)(4,151,115,128)(5,129,116,152)(6,153,117,130)(7,131,118,154)(8,155,119,132)(9,133,120,156)(10,157,101,134)(11,135,102,158)(12,159,103,136)(13,137,104,160)(14,141,105,138)(15,139,106,142)(16,143,107,140)(17,121,108,144)(18,145,109,122)(19,123,110,146)(20,147,111,124)(21,55,83,77)(22,78,84,56)(23,57,85,79)(24,80,86,58)(25,59,87,61)(26,62,88,60)(27,41,89,63)(28,64,90,42)(29,43,91,65)(30,66,92,44)(31,45,93,67)(32,68,94,46)(33,47,95,69)(34,70,96,48)(35,49,97,71)(36,72,98,50)(37,51,99,73)(38,74,100,52)(39,53,81,75)(40,76,82,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,152,11,142)(2,141,12,151)(3,150,13,160)(4,159,14,149)(5,148,15,158)(6,157,16,147)(7,146,17,156)(8,155,18,145)(9,144,19,154)(10,153,20,143)(21,57,31,47)(22,46,32,56)(23,55,33,45)(24,44,34,54)(25,53,35,43)(26,42,36,52)(27,51,37,41)(28,60,38,50)(29,49,39,59)(30,58,40,48)(61,91,71,81)(62,100,72,90)(63,89,73,99)(64,98,74,88)(65,87,75,97)(66,96,76,86)(67,85,77,95)(68,94,78,84)(69,83,79,93)(70,92,80,82)(101,130,111,140)(102,139,112,129)(103,128,113,138)(104,137,114,127)(105,126,115,136)(106,135,116,125)(107,124,117,134)(108,133,118,123)(109,122,119,132)(110,131,120,121) );

G=PermutationGroup([(1,87,11,97),(2,98,12,88),(3,89,13,99),(4,100,14,90),(5,91,15,81),(6,82,16,92),(7,93,17,83),(8,84,18,94),(9,95,19,85),(10,86,20,96),(21,118,31,108),(22,109,32,119),(23,120,33,110),(24,111,34,101),(25,102,35,112),(26,113,36,103),(27,104,37,114),(28,115,38,105),(29,106,39,116),(30,117,40,107),(41,160,51,150),(42,151,52,141),(43,142,53,152),(44,153,54,143),(45,144,55,154),(46,155,56,145),(47,146,57,156),(48,157,58,147),(49,148,59,158),(50,159,60,149),(61,135,71,125),(62,126,72,136),(63,137,73,127),(64,128,74,138),(65,139,75,129),(66,130,76,140),(67,121,77,131),(68,132,78,122),(69,123,79,133),(70,134,80,124)], [(1,125,112,148),(2,149,113,126),(3,127,114,150),(4,151,115,128),(5,129,116,152),(6,153,117,130),(7,131,118,154),(8,155,119,132),(9,133,120,156),(10,157,101,134),(11,135,102,158),(12,159,103,136),(13,137,104,160),(14,141,105,138),(15,139,106,142),(16,143,107,140),(17,121,108,144),(18,145,109,122),(19,123,110,146),(20,147,111,124),(21,55,83,77),(22,78,84,56),(23,57,85,79),(24,80,86,58),(25,59,87,61),(26,62,88,60),(27,41,89,63),(28,64,90,42),(29,43,91,65),(30,66,92,44),(31,45,93,67),(32,68,94,46),(33,47,95,69),(34,70,96,48),(35,49,97,71),(36,72,98,50),(37,51,99,73),(38,74,100,52),(39,53,81,75),(40,76,82,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,152,11,142),(2,141,12,151),(3,150,13,160),(4,159,14,149),(5,148,15,158),(6,157,16,147),(7,146,17,156),(8,155,18,145),(9,144,19,154),(10,153,20,143),(21,57,31,47),(22,46,32,56),(23,55,33,45),(24,44,34,54),(25,53,35,43),(26,42,36,52),(27,51,37,41),(28,60,38,50),(29,49,39,59),(30,58,40,48),(61,91,71,81),(62,100,72,90),(63,89,73,99),(64,98,74,88),(65,87,75,97),(66,96,76,86),(67,85,77,95),(68,94,78,84),(69,83,79,93),(70,92,80,82),(101,130,111,140),(102,139,112,129),(103,128,113,138),(104,137,114,127),(105,126,115,136),(106,135,116,125),(107,124,117,134),(108,133,118,123),(109,122,119,132),(110,131,120,121)])

Matrix representation G ⊆ GL8(𝔽41)

004010000
7139340000
38234000000
37234000000
0000231038
0000518338
000028132440
0000280117
,
004010000
7139340000
38234000000
37234000000
000023100
000051800
000000171
0000004024
,
1512020000
313939290000
24012290000
302412160000
000001299
000019221918
000031293129
00003191229
,
33348140000
4035760000
86770000
213770000
000021300
000032000
0000002440
000000317

G:=sub<GL(8,GF(41))| [0,7,38,37,0,0,0,0,0,1,23,23,0,0,0,0,40,39,40,40,0,0,0,0,1,34,0,0,0,0,0,0,0,0,0,0,23,5,28,28,0,0,0,0,1,18,13,0,0,0,0,0,0,3,24,1,0,0,0,0,38,38,40,17],[0,7,38,37,0,0,0,0,0,1,23,23,0,0,0,0,40,39,40,40,0,0,0,0,1,34,0,0,0,0,0,0,0,0,0,0,23,5,0,0,0,0,0,0,1,18,0,0,0,0,0,0,0,0,17,40,0,0,0,0,0,0,1,24],[15,31,24,30,0,0,0,0,12,39,0,24,0,0,0,0,0,39,12,12,0,0,0,0,2,29,29,16,0,0,0,0,0,0,0,0,0,19,31,3,0,0,0,0,12,22,29,19,0,0,0,0,9,19,31,12,0,0,0,0,9,18,29,29],[33,40,8,2,0,0,0,0,34,35,6,13,0,0,0,0,8,7,7,7,0,0,0,0,14,6,7,7,0,0,0,0,0,0,0,0,21,3,0,0,0,0,0,0,3,20,0,0,0,0,0,0,0,0,24,3,0,0,0,0,0,0,40,17] >;

50 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C···4H4I4J4K4L4M4N4O5A5B10A···10F20A···20L20M···20T
order1222222444···444444445510···1020···2020···20
size1111202020224···410101010202020222···24···48···8

50 irreducible representations

dim1111111111112222244444
type+++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4D10D10D102+ (1+4)2- (1+4)Q82D5D46D10Q8.10D10
kernelC42.178D10C42⋊D5C4.D20Dic53Q8D208C4D10.13D4C42D20D102Q8C4⋊C4⋊D5D103Q8C20.23D4C5×C4⋊Q8C4⋊Q8C20C42C4⋊C4C2×Q8C10C10C4C2C2
# reps1111121122212428411444

In GAP, Magma, Sage, TeX

C_4^2._{178}D_{10}
% in TeX

G:=Group("C4^2.178D10");
// GroupNames label

G:=SmallGroup(320,1405);
// by ID

G=gap.SmallGroup(320,1405);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,120,758,219,100,675,570,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=a^-1,d*a*d^-1=a^-1*b^2,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽